A) Définition et propriétés

1) Définition du produit scalaire

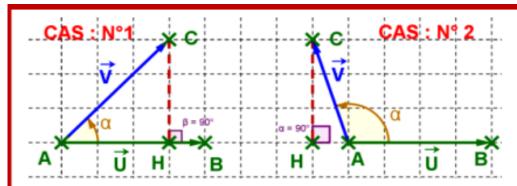
Définition

 \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls tels que $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$ H est le projeté orthogonal du point C sur la droite (AB) on a Si les vecteurs \overrightarrow{AB} et \overrightarrow{AH} ont le même sens alors :

$$\vec{u}.\vec{v} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AH} = AB \times AH$$

Si \overrightarrow{AB} et \overrightarrow{AH} ont une sens opposée alors :

$$\vec{u}.\vec{v} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AH} = -AB \times AH$$



Exercice 1

Soit un carré ABCD de côté c.

Calculer, en fonction de c, les produits scalaires :

a)
$$\overrightarrow{AB}$$
. \overrightarrow{AC}

b)
$$\overrightarrow{AB}$$
. \overrightarrow{AD}

c)
$$\overrightarrow{AD}$$
. \overrightarrow{CB}

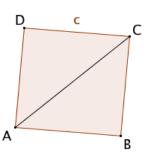
Solution de l'exercice 1

a) Par projection, on a :

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = \|\overrightarrow{AB}\|^2 = c^2$$

b) $\overrightarrow{AB} \cdot \overrightarrow{AD} = 0$ car les vecteurs \overrightarrow{AB} et \overrightarrow{AD} sont orthogonaux.

c)
$$\overrightarrow{AD}$$
. $\overrightarrow{CB} = \overrightarrow{AD}$. $\overrightarrow{DA} = -\|\overrightarrow{AD}\|^2 = -c^2$



3) Formule trigonométrique du produit scalaire

Propriété:

Soit \vec{u} et \vec{v} deux vecteurs du plan.

On appelle produit scalaire de $ec{u}$ par $ec{v}$

, noté $ec{u}$. $ec{v}$, le nombre réel défini par :

 $\vec{u} \cdot \vec{v} = 0$, si l'un des deux vecteurs \vec{u} et \vec{v} est nul

- \vec{u} . $\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times cos(\vec{u}; \vec{v})$, dans le cas contraire.

 \vec{u} . \vec{v} se lit " \vec{u} scalaire \vec{v} ".

Remarque:

Si \overrightarrow{AB} et \overrightarrow{AC} sont deux représentants des vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} alors :

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos \widehat{BAC}$$

Exercice 2

Soit un triangle équilatéral ABC de côté a.

Calculer, en fonction de a, le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} .

Solution de l'exercice 2

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos \widehat{BAC}$$

$$= a \times a \times \cos \frac{\pi}{3}$$

$$= a^2 \times \frac{1}{2}$$

$$= \frac{a^2}{2}$$

2) <u>Vecteurs orthogonaux</u>

Propriété:

Les vecteurs \vec{u} et \vec{v} sont orthogonaux ssi \vec{u} . $\vec{v} = 0$

Solution de l'exercice 3

Soit \vec{u} et \vec{v} deux vecteurs., tels que

$$\|\vec{u}\| = \|\vec{v}\| = 2\sqrt{2} \text{ et } \|\vec{u} - \vec{v}\| = 2$$

1) Montrer que \vec{u} . $\vec{v} = 6$

On a:
$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2\vec{u}.\vec{v} + \|\vec{v}\|^2$$

Donc
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

Donc
$$\vec{u} \cdot \vec{v} = \frac{1}{2} \left((2\sqrt{2})^2 + (2\sqrt{2})^2 - 2^2 \right)$$

Donc
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (8 + 8 - 4)$$

= 6

2) Montrer que $\|\vec{u} + \vec{v}\| = \sqrt{28}$

On a:
$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

Donc:
$$\|\vec{u} + \vec{v}\|^2 = (2\sqrt{2})^2 + 2 \times 6 + (2\sqrt{2})^2$$

= 28

$$\mathbf{Donc} \| \overrightarrow{u} + \overrightarrow{v} \| = \sqrt{28}$$

- 3) On pose $\overrightarrow{u'} = \overrightarrow{u} 2\overrightarrow{v}$ et $\overrightarrow{v'} = 5\overrightarrow{u} 2\overrightarrow{v}$
- a) Montrer que $\overrightarrow{u'}$ et $\overrightarrow{v'}$ sont orthogonaux

$$\overrightarrow{u'}.\overrightarrow{v'} = (\overrightarrow{u} - 2\overrightarrow{v})(5\overrightarrow{u} - 2\overrightarrow{v})
= 5\overrightarrow{u}^2 - 2\overrightarrow{u}.\overrightarrow{v} - 10\overrightarrow{v}.\overrightarrow{u} + 4\overrightarrow{v}^2
= 5||\overrightarrow{u}||^2 - 2\overrightarrow{u}.\overrightarrow{v} - 10\overrightarrow{u}.\overrightarrow{v} + 4||\overrightarrow{v}||^2
= 5||\overrightarrow{u}||^2 + 4||\overrightarrow{v}||^2 - 12\overrightarrow{u}.\overrightarrow{v}
= 5 \times 8 + 4 \times 8 - 12 \times 6 = 0$$

Donc $\overrightarrow{u'}$ et $\overrightarrow{v'}$ sont orthogonaux

b) Calculer $\|\overrightarrow{u'}\|$

$$\|\overrightarrow{u'}\|^2 = \|\overrightarrow{u} - 2\overrightarrow{v}\|^2$$

$$= \|\overrightarrow{u}\|^2 - 4\overrightarrow{u}.\overrightarrow{v} + 4\|\overrightarrow{v}\|^2$$

$$= (2\sqrt{2})^2 - 4 \times 6 + 4(2\sqrt{2})^2$$

$$= 16$$

$\mathsf{Donc} \, \big\| \overrightarrow{u'} \big\| = \mathsf{4}$

Propriété 02:

Soit A, B et C trois points du plan. On a :

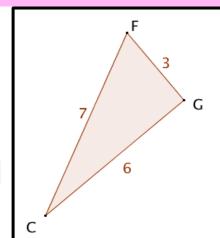
$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$

Démonstration :

$$|\overrightarrow{AB}.\overrightarrow{AC}| = \frac{1}{2} \left(||\overrightarrow{AB}||^2 + ||\overrightarrow{AC}||^2 - ||\overrightarrow{AB} - \overrightarrow{AC}||^2 \right)$$
$$= \frac{1}{2} \left(AB^2 + AC^2 - ||\overrightarrow{CB}||^2 \right) = \frac{1}{2} \left(AB^2 + AC^2 - BC^2 \right)$$

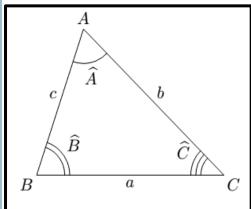
On considère la figure ci-contre, calculer le produit scalaire \overline{CG} . \overline{CF} .

$$\overrightarrow{CG}. \overrightarrow{CF} = \frac{1}{2} (CG^2 + CF^2 - GF^2)$$
$$= \frac{1}{2} (6^2 + 7^2 - 3^2)$$
$$= 38$$



5) Théorème d'Al Kashi

Soit ABC un triangle, on pose BC = a; AC = b et AB = c



$$BC^{2} = AB^{2} + AC^{2} - 2 AB \times AC \times \cos \widehat{A}$$

$$ou \ a^{2} = c^{2} + b^{2} - 2 c \times b \times \cos \widehat{A}$$

$$AC^{2} = AB^{2} + BC^{2} - 2AB \times BC \times \cos \widehat{B}$$

$$ou \ b^{2} = c^{2} + a^{2} - 2c \times a \times \cos \widehat{B}$$

$$AB^2 = AC^2 + BC^2 - 2 AC \times BC \times \cos \widehat{C}$$
ou $c^2 = b^2 + a^2 - 2 b \times a \times \cos \widehat{C}$

Démonstration:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos \widehat{A} = bc \cos \widehat{A}$$
 et

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2) = \frac{1}{2}(b^2 + c^2 - a^2)$$

Donc:
$$\frac{1}{2}(b^2 + c^2 - a^2) = bc \cos \widehat{A}$$

Soit:
$$b^2 + c^2 - a^2 = 2 bc \cos \widehat{A}$$

Soit encore :
$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

Exercice 5

Soit ABC un triangle, tels que $AB = \sqrt{7}$; AC = 2 et BC = 3

- 1) Calculer $cos(B\widehat{A}C)$ puis montrer que \overrightarrow{AB} . $\overrightarrow{AC} = 1$
- 2) On pose $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$
- a) Calculer \overrightarrow{AM} . \overrightarrow{AC}
- b) Montrer que les droites (MB) et (AC) sont orthogonaux Solution de l'exercice 5

Soit ABC un triangle, on pose $AB = \sqrt{7}$; AC = 2 et BC = 3

1) Calculer $cos(B\widehat{A}C)$ puis montrer que \overrightarrow{AB} . $\overrightarrow{AC} = 1$ D'après Théorème d'Al Kashi

$$BC^{2} = AB^{2} + AC^{2} - 2AB \times AC \times cos(B\widehat{A}C)$$

Donc
$$2 AB \times AC \cos(B\widehat{A}C) = AB^2 + AC^2 - BC^2$$

Donc
$$cos(B\widehat{A}C) = \frac{AB^2 + AC^2 - BC^2}{2 AB \times AC}$$

Donc
$$cos(B\widehat{A}C) = \frac{\sqrt{7}^2 + 2^2 - 3^2}{2\sqrt{7} \times 2}$$

Donc
$$\cos(B\widehat{A}C) = \frac{2}{4\sqrt{7}} = \frac{\sqrt{7}}{14}$$

On a
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$

Donc
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = \frac{1}{2} \left(\sqrt{7}^2 + 2^2 - 3^2 \right)$

Donc
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = 1$

2) On pose $\overrightarrow{AM} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}$

a) Calculer \overrightarrow{AM} . \overrightarrow{AC}

$$\overrightarrow{AM}.\overrightarrow{AC} = (\frac{1}{3}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AC}).\overrightarrow{AC}$$

$$= \frac{1}{3}\overrightarrow{AB}.\overrightarrow{AC} + \frac{1}{6}\overrightarrow{AC}.\overrightarrow{AC}$$

$$= \frac{1}{3}\overrightarrow{AB}.\overrightarrow{AC} + \frac{1}{6}\overrightarrow{AC}.\overrightarrow{AC}$$

$$= \frac{1}{3}\overrightarrow{AB}.\overrightarrow{AC} + \frac{1}{6}\overrightarrow{AC}^{2}$$

$$= \frac{1}{3} + \frac{1}{6} \times 2^{2}$$

$$= 1$$

b) Montrer que les droites (MB) et (AC) sont orthogonaux

$$\overrightarrow{MB}.\overrightarrow{AC} = (\overrightarrow{MA} + \overrightarrow{AB}).\overrightarrow{AC}$$

$$= \overrightarrow{MA}.\overrightarrow{AC} + \overrightarrow{AB}.\overrightarrow{AC}$$

$$= -\overrightarrow{AM}.\overrightarrow{AC} + \overrightarrow{AB}.\overrightarrow{AC}$$

$$= -1 + 1$$

$$= 0$$

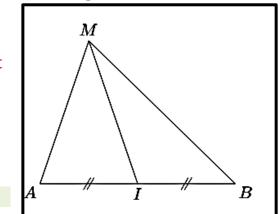
Donc \overrightarrow{MB} et \overrightarrow{AC} sont orthogonaux

Donc es droites (MB) et (AC) sont orthogonaux

6) Théorème de médiane

Soient A et B deux points du plan et I le milieu de segment [AB], alors pour tout point M du plan on a:

$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$



Exercice 6

Soit ABC un triangle et I le milieu de segment [BC] tels que

$$IA = 3$$
; $IB = IC = 2$

- 1) Calculer $AB^2 + AC^2$ puis $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- 2) On pose $(B\hat{I}A) = \frac{\pi}{3}$, calculer \overrightarrow{IB} . \overrightarrow{IA}

Solution de l'exercice 6

1) Calculer $AB^2 + AC^2$ puis $\overrightarrow{AB} \cdot \overrightarrow{AC}$

On a I le milieu de segment [BC]

Donc d'après théorème de médiane on a pour tout point M

$$MB^2 + MC^2 = 2MI^2 + \frac{1}{2}BC^2$$

On pose M = A on trouve:

$$AB^{2} + AC^{2} = 2AI^{2} + \frac{1}{2}BC^{2}$$

= $2 \times 3^{2} + \frac{1}{2} \times 4^{2}$

$$= 26$$

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$
$$= \frac{1}{2}(26 - 4^2)$$
$$= 5$$

2) On pose $(B\hat{I}A) = \frac{\pi}{3}$, calculer \overrightarrow{IB} . \overrightarrow{IA}

$$\overrightarrow{IB}.\overrightarrow{IA} = IB \times IA \times cos(B\widehat{I}A)$$

$$= 2 \times 3 \times cos(\frac{\pi}{3})$$

$$= 2 \times 3 \times \frac{1}{2}$$

$$= 3$$