Exercice 01

On utilisant la relation $\frac{\alpha}{180} = \frac{\beta}{\pi}$, compléter le tableau suivant :

100 11								
	Mesure en	33°		150°		80°		
	degrés $oldsymbol{eta}$							
	Mesure en		$\frac{3\pi}{2}$ rad		π		π	
	radians α		$\frac{-}{8}$ raa		$\frac{10}{10}$ rad		9	

Exercice 02

- 1) Déterminer l'abscisse principale du point $M\left(\frac{-11\pi}{6}\right)$:
- 2) Représenter sur le cercle trigonométrique les points A,B,C,D ; E et F d'abscisses curvilignes respectives $\frac{\pi}{3}$, $\frac{-\pi}{2}$, $\frac{3\pi}{2}$, $\frac{2\pi}{3}$, $\frac{-4\pi}{3}$

Exercice 03

- 1) Déterminer l'abscisses curviligne principale de $\frac{27\pi}{4}$
- 2) Placer sur le cercle trigonométrique, les points M et N tels que l'angle $(\vec{i}; \overrightarrow{OM})$ mesure $\frac{9\pi}{4}$ rad et l'angle $(\vec{i}; \overrightarrow{ON})$ mesure $\frac{8\pi}{3}$ rad
- 3) Soient $(\widehat{Ox}, \widehat{Oy})$ et $(\widehat{Oy}, \widehat{Oz})$ deux angles orientés de mesures principales respectives $\frac{3\pi}{4}$ et $\frac{2\pi}{3}$.

Déterminons la mesure principale de l'angle orienté $(\widehat{0x},\widehat{0z})$.

Exercice 04

- 1) Soient deux vecteurs \vec{u} et \vec{v} tels que $(\vec{u}, \vec{v}) = \frac{\pi}{2} + 2k\pi$ où $k \in \mathbb{Z}$ Déterminer: $(-\vec{u}, \vec{v})$; $(-\vec{u}, -\vec{v})$; $(\vec{u}, -\vec{v})$; $(\vec{v}, -\vec{u})$
- 2) Soit *ABC* un triangle équilatéral tel que : $(\overrightarrow{AB}; \overrightarrow{AC}) \equiv \frac{\pi}{3} [2\pi]$

I:I et K les milieux respectifs des segments [BC]:[AC] et [AB]Déterminer la mesure principale de chacun des angles orientés :

a)
$$(\widehat{BC};\widehat{CA})$$
 ; b) $(\widehat{BC};\widehat{JK})$; c) $(\widehat{AI};\widehat{CA})$

b)
$$(\widehat{BC};\widehat{JK})$$

c)
$$(\widehat{AI};\widehat{CA})$$

Exercice 05

- 1) Soit $x \in \mathbb{R}$ tel que $0 \le x \le \frac{\pi}{2}$ et $\sin x = \frac{3}{4}$; Calculer $\cos x$.
- **2)** Soit $y \in \mathbb{R}$ tel que $-\pi \le y \le -\frac{\pi}{2}$ et sin $y = -\frac{2}{5}$; Calculercos y

Exercice 06

- 1) Calculer les rapports trigonométriques des nombres réels suivants: 9π ; $-\frac{\pi}{3}$; $\frac{3\pi}{2}$; $\frac{5\pi}{6}$; $\frac{-4\pi}{3}$
- 2) Simplifier les expressions suivantes :

$$A = sin\left(\frac{\pi}{13}\right) + sin\left(\frac{3\pi}{13}\right) + sin\left(\frac{14\pi}{13}\right) + sin\left(\frac{16\pi}{13}\right)$$

$$B = cos(2022\pi) + cos(2023\pi) + 2cos\left(\frac{\pi}{7}\right) + cos\left(\frac{8\pi}{7}\right) + cos\left(\frac{6\pi}{7}\right)$$

$$C = sin^2\left(\frac{\pi}{11}\right) + sin^2\left(\frac{3\pi}{11}\right) + sin^2\left(\frac{17\pi}{22}\right) + sin^2\left(\frac{9\pi}{22}\right)$$

- 1) Déterminer $sin\left(\frac{5\pi}{6}\right)$; $cos\left(-\frac{13\pi}{6}\right)$; $cos\left(\frac{55\pi}{3}\right)$ et $sin\left(-\frac{7\pi}{6}\right)$
- 2) Soit $x \in \left[\frac{\pi}{2}; \pi\right]$ tel que $sin(x) = \frac{4}{5}$; caluler sin(x)
- 3) Sachant que $tan\left(\frac{\pi}{8}\right) = \sqrt{2} 1$
 - a) Montrer que : $cos(\frac{\pi}{8}) = \frac{\sqrt{2+\sqrt{2}}}{2}$ puis calculer $sin(\frac{\pi}{8})$.
 - b) Calculer : $cos\left(\frac{3\pi}{8}\right)$ et $cos\left(\frac{7\pi}{8}\right)$

1) Simplifier les expressions suivantes :

$$A = (\cos x + \sin x)^2 + (\cos x - \sin x)^2$$

$$B = \sin^4 x - \cos^4 x - \sin^2 x + \cos^2 x$$

2) Montre que : $\sin^4 x + \cos^4 x + 2(1 - \cos^2 x)\cos^2 x = 1$

Exercice 09

- 1) Calculer $\tan\left(\frac{11\pi}{6}\right)$ et $\tan\left(\frac{3\pi}{4}\right)$
- 2) Simplifier les expressions suivantes :

$$A = tan\left(\frac{\pi}{7}\right) + tan\left(\frac{3\pi}{7}\right) + tan\left(\frac{4\pi}{7}\right) + tan\left(\frac{6\pi}{7}\right)$$

$$B = cos\left(\frac{\pi}{7}\right) sin\left(\frac{\pi}{7}\right) \left(tan\left(\frac{\pi}{7}\right) + tan\left(\frac{5\pi}{14}\right)\right)$$

Exercice 10

- 1) a) Résoudre dans \mathbb{R} l'équation (E) : $\cos x = \frac{1}{2}$
 - b) Résoudre dans $[-2\pi; 2\pi]$ l'équation (E) : $\cos x = \frac{1}{2}$
- **2)** a) Résoudre dans $[-\pi; \pi]$ l'inéquation (I): $\cos x \ge \frac{\sqrt{2}}{2}$
 - **b)** Résoudre dans $[-\pi; 0]$ l'inéquation (I_2) : $\cos x < \frac{\sqrt{2}}{2}$
 - c) Résoudre dans l'intervalle $[0; \pi]$ l'inéquation (I_2) : $\cos x < \frac{\sqrt{2}}{2}$
 - d) Résoudre dans l'intervalle $[0; 2\pi]$ l'inéquation (I_2) : $\cos x < \frac{\sqrt{2}}{2}$

Exercice 11

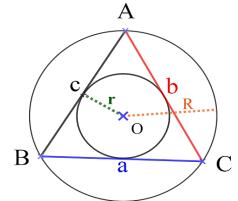
- 1)a) Résoudre dans \mathbb{R} l'équation (E) : $\sin x = \frac{1}{2}$
 - b) Résoudre dans l'intervalle $[0; 4\pi]$ l'équation (E) : $\sin x = \frac{1}{2}$
- **2)**a) Résoudre dans $[-\pi; \pi]$ l'inéquation (I_1) : $\sin x \le \frac{1}{2}$
 - **b)** Résolvons dans $[-\pi; \pi]$ l'inéquation (I_2) : $\sin x > \frac{1}{2}$

Exercice 12

- 1) Résoudre dans \mathbb{R} l'équation (E) : $\tan x = \sqrt{3}$
- 2) Résoudre dans l'intervalle $[-\pi; \pi]$ l'inéquation (I_1) : tan $x \le \sqrt{3}$
- 3) Résoudre dans $[-\pi; \pi]$ l'inéquation (I_2) : tan $x > \sqrt{3}$

Exercice 13

- 1) Soit ABC un triangle équilatéral tel que AB = 3cm.
- Calculer la surface de ce triangle.
- 2) Soit ABC un triangle tel que
- AB = 5cm, $\widehat{A} = \frac{\pi}{4}$ rad et $\widehat{B} = \frac{\pi}{6}$ rad.
- a) Calculer BC et AC.
- b) Calcluer la surface de ce triangle.
- c) Déterminer le rayon du cercle circonscrit au triangle ABC.
- d) Déterminer le rayon du cercle inscrit dans triangle ABC



Exercice 14

- Pour tout x de \mathbb{R} , on pose : $P(x) = 2sin^2(x) sinx 1$
- 1) Montrer que $P(\pi x) = P(x)$
- 2) Déduire $P\left(\frac{2\pi}{3}\right)$ et $P\left(\frac{5\pi}{6}\right)$.
- 2) Montrer que pour tout x de \mathbb{R} : P(x) = (2sinx + 1)(sinx 1)
- 3) Résoudre dans l'intervalle $[0, 2\pi[$ l'équation P(x) = 0
- 4) Résoudre dans l'intervalle $[0, 2\pi[$ l'inéquation $P(x) \ge 0$.

Exercice 15

Pour tout x de $\mathbb R$, on pose :

$$A(x) = \cos\left(x + \frac{\pi}{4}\right) + \sin\left(x + \frac{\pi}{4}\right) + \cos\left(x - \frac{\pi}{4}\right) + \sin\left(x - \frac{\pi}{4}\right)$$

- 1) Montrer que $A(x) = 2\cos\left(x \frac{\pi}{4}\right)$
- 2) Résoudre dans \mathbb{R} , l'équation $A(x) = \sqrt{2}$.
- 3) Résoudre dans l'intervalle $]-\pi,\pi]$ l'inéquation $A(x)<\sqrt{2}$

Exercice 16

- Pour tout x de \mathbb{R} , on pose : $A(x) = \cos(x)\sin(x)$
- 1) Calculer $A\left(\frac{19\pi}{3}\right)$
- 2) Montrer que $A(\pi + x) = A(x)$ et $A\left(\frac{\pi}{2} x\right) = A(x)$
- **3)**Montrer que pour tout $x \neq \frac{\pi}{2} + k\pi$; $k \in \mathbb{Z}$: $A(x) = \frac{tanx}{1+tanx}$
- **4)** Résoudre dans l'intervalle $]-\pi,\pi]$ l'équation $A(x)=\frac{\sqrt{3}}{4}$

Exercice 17

- Soient *ABC* un triangle tels que : AB = 4 et $\widehat{BAC} = \frac{\pi}{3}$ et $\widehat{ABC} = \frac{\pi}{4}$
- On pose AC = b et BC = a.
- 1) Montrer que : $b = \frac{a\sqrt{6}}{3}$
- **2)** a) Montrer que : $a^2 + 4\sqrt{6}a 48 = 0$.
 - **b)** Calculer a, puis calculer $\sin\left(\frac{5\pi}{12}\right)$.
 - c) Calculer le rayon R du cercle circonscrit au triangle ABC.